Detecting Race and Gender Bias in Visual Representation of AI on Web Search Engines

Abstract: Web search engines influence perception of social reality by filtering and ranking information. However, their outputs are often subjected to bias that can lead to skewed representation of subjects such as professional occupations or gender. In our paper, we use a mixed-method approach to investigate presence of race and gender bias in representation of artificial intelligence (AI) in image search results coming from six different search engines. Our findings show that search engines prioritize anthropomorphic images of AI that portray it as white, whereas non-white images of AI are present only in non-Western search engines. By contrast, gender representation of AI is more diverse and less skewed towards a specific gender that can be attributed to higher awareness about gender bias in search outputs. Our observations indicate both the need and the possibility for addressing bias in representation of societally relevant subjects, such as technological innovation, and emphasize the

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource, 1-16 S.
Sprache
Englisch
Anmerkungen
Preprint
nicht begutachtet
In: Boratto, Ludovico (Hg.), Faralli, Stefano (Hg.), Marras, Mirko (Hg.), Stilo, Giovanni (Hg.): Advances in Bias and Fairness in Information Retrieval. 2021. S. 1-16. ISBN 978-3-030-78818-6

Erschienen in
Advances in Bias and Fairness in Information Retrieval ; Bd. 1418
Communications in Computer and Information Science ; Bd. 1418

Ereignis
Veröffentlichung
(wo)
Mannheim
(wer)
SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.
(wann)
2021
Ereignis
Veröffentlichung
(wo)
Cham
(wer)
Springer
(wann)
2021
Urheber
Beteiligte Personen und Organisationen
Boratto, Ludovico
Faralli, Stefano
Marras, Mirko
Stilo, Giovanni

DOI
10.1007/978-3-030-78818-6_5
URN
urn:nbn:de:0168-ssoar-75528-7
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:20 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2021

Ähnliche Objekte (12)