Detecting Race and Gender Bias in Visual Representation of AI on Web Search Engines
Abstract: Web search engines influence perception of social reality by filtering and ranking information. However, their outputs are often subjected to bias that can lead to skewed representation of subjects such as professional occupations or gender. In our paper, we use a mixed-method approach to investigate presence of race and gender bias in representation of artificial intelligence (AI) in image search results coming from six different search engines. Our findings show that search engines prioritize anthropomorphic images of AI that portray it as white, whereas non-white images of AI are present only in non-Western search engines. By contrast, gender representation of AI is more diverse and less skewed towards a specific gender that can be attributed to higher awareness about gender bias in search outputs. Our observations indicate both the need and the possibility for addressing bias in representation of societally relevant subjects, such as technological innovation, and emphasize the
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource, 1-16 S.
- Sprache
-
Englisch
- Anmerkungen
-
Preprint
nicht begutachtet
In: Boratto, Ludovico (Hg.), Faralli, Stefano (Hg.), Marras, Mirko (Hg.), Stilo, Giovanni (Hg.): Advances in Bias and Fairness in Information Retrieval. 2021. S. 1-16. ISBN 978-3-030-78818-6
- Erschienen in
-
Advances in Bias and Fairness in Information Retrieval ; Bd. 1418
Communications in Computer and Information Science ; Bd. 1418
- Ereignis
-
Veröffentlichung
- (wo)
-
Mannheim
- (wer)
-
SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.
- (wann)
-
2021
- Ereignis
-
Veröffentlichung
- (wo)
-
Cham
- (wer)
-
Springer
- (wann)
-
2021
- Urheber
- Beteiligte Personen und Organisationen
- DOI
-
10.1007/978-3-030-78818-6_5
- URN
-
urn:nbn:de:0168-ssoar-75528-7
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:20 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Makhortykh, Mykola
- Urman, Aleksandra
- Ulloa, Roberto
- Boratto, Ludovico
- Faralli, Stefano
- Marras, Mirko
- Stilo, Giovanni
- SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.
- Springer
Entstanden
- 2021