Arbeitspapier

Uncertainty, Skewness, and the Business Cycle through the MIDAS Lens

We employ a mixed-frequency quantile regression approach to model the time-varying conditional distribution of the US real GDP growth rate. We show that monthly information on the US financial cycle improves the predictive power of an otherwise quarterly-only model. We combine selected quantiles of the estimated conditional distribution to produce measures of uncertainty and skewness. Embedding these measures in a VAR framework, we show that unexpected changes in uncertainty are associated with an increase in (left) skewness and a downturn in real activity. Empirical findings related to VAR impulse responses and forecast error variance decomposition are shown to depend on the inclusion/omission of monthly-level information on financial conditions when estimating real GDP growth's conditional density. Effects are significantly downplayed if we consider a quarterly-only quantile regression model. A counterfactual simulation conducted by shutting down the endogenous response of skewness to uncertainty shocks shows that skewness substantially amplifies the recessionary effects of uncertainty.

Sprache
Englisch

Erschienen in
Series: CESifo Working Paper ; No. 10062

Klassifikation
Wirtschaft
Macroeconomics: Consumption; Saving; Wealth
Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
Thema
uncertainty
skewness
quantile regressions
vector autoregressions
MIDAS

Ereignis
Geistige Schöpfung
(wer)
Castelnuovo, Efrem
Mori, Lorenzo
Ereignis
Veröffentlichung
(wer)
Center for Economic Studies and ifo Institute (CESifo)
(wo)
Munich
(wann)
2022

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Castelnuovo, Efrem
  • Mori, Lorenzo
  • Center for Economic Studies and ifo Institute (CESifo)

Entstanden

  • 2022

Ähnliche Objekte (12)