Arbeitspapier
Combining Predictive Densities using Bayesian Filtering with Applications to US Economics Data
Using a Bayesian framework this paper provides a multivariate combination approach to prediction based on a distributional state space representation of predictive densities from alternative models. In the proposed approach the model set can be incomplete. Several multivariate time-varying combination strategies are introduced. In particular, a weight dynamics driven by the past performance of the predictive densities is considered and the use of learning mechanisms. The approach is assessed using statistical and utility-based performance measures for evaluating density forecasts of US macroeconomic time series and of surveys of stock market prices.
- Language
-
Englisch
- Bibliographic citation
-
Series: Tinbergen Institute Discussion Paper ; No. 11-003/4
- Classification
-
Wirtschaft
Bayesian Analysis: General
Statistical Simulation Methods: General
Forecasting Models; Simulation Methods
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
- Subject
-
Density Forecast Combination
Survey Forecast
Bayesian Filtering
Sequential Monte Carlo
Bayes-Statistik
Statistische Verteilung
Prognoseverfahren
Zeitreihenanalyse
Modellierung
- Event
-
Geistige Schöpfung
- (who)
-
Billio, Monica
Casarin, Roberto
Ravazzolo, Francesco
van Dijk, Herman K.
- Event
-
Veröffentlichung
- (who)
-
Tinbergen Institute
- (where)
-
Amsterdam and Rotterdam
- (when)
-
2011
- Handle
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Billio, Monica
- Casarin, Roberto
- Ravazzolo, Francesco
- van Dijk, Herman K.
- Tinbergen Institute
Time of origin
- 2011