Arbeitspapier

Combining Predictive Densities Using Bayesian Filtering with Applications to Us Economics Data

Using a Bayesian framework this paper provides a multivariate combination approach to prediction based on a distributional state space representation of predictive densities from alternative models. In the proposed approach the model set can be incomplete. Several multivariate time-varying combination strategies are introduced. In particular, a weight dynamics driven by the past performance of the predictive densities is considered and the use of learning mechanisms. The approach is assessed using statistical and utility-based performance measures forevaluating density forecasts of US macroeconomic time series and of surveys of stock market prices.

ISBN
978-82-7553-586-1
Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 2010/29

Klassifikation
Wirtschaft
Bayesian Analysis: General
Statistical Simulation Methods: General
Forecasting Models; Simulation Methods
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Thema
Bayesian filtering
sequential Monte Carlo
density forecast combination
survey forecast

Ereignis
Geistige Schöpfung
(wer)
Billio, Monica
Casarin, Roberto
Ravazzolo, Francesco
van Dijk, Herman K.
Ereignis
Veröffentlichung
(wer)
Norges Bank
(wo)
Oslo
(wann)
2010

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Billio, Monica
  • Casarin, Roberto
  • Ravazzolo, Francesco
  • van Dijk, Herman K.
  • Norges Bank

Entstanden

  • 2010

Ähnliche Objekte (12)