Arbeitspapier
HMM in dynamic HAC models
Understanding the dynamics of high dimensional non-normal dependency structure is a challenging task. This research aims at attacking this problem by building up a hidden Markov model (HMM) for Hierarchical Archimedean Copulae (HAC), where the HAC represent a wide class of models for high dimensional dependency, and HMM is a statistical technique to describe time varying dynamics. HMM applied to HAC provide flexible modeling for high dimensional non Gaussian time series. Consistency results for both parameters and HAC structures are established in an HMM framework. The model is calibrated to exchange rate data with a VaR application, where the model's performance is compared with other dynamic models, and in the second application we simulate rainfall process.
- Language
-
Englisch
- Bibliographic citation
-
Series: SFB 649 Discussion Paper ; No. 2012-001
- Classification
-
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
- Subject
-
Hidden Markov model
Hierarchical Archimedean Copulae
multivariate distribution
Markovscher Prozess
Kopula (Mathematik)
Statistische Verteilung
Theorie
- Event
-
Geistige Schöpfung
- (who)
-
Härdle, Wolfgang Karl
Okhrin, Ostap
Wang, Weining
- Event
-
Veröffentlichung
- (who)
-
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
- (where)
-
Berlin
- (when)
-
2012
- Handle
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Härdle, Wolfgang Karl
- Okhrin, Ostap
- Wang, Weining
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Time of origin
- 2012