Arbeitspapier

HMM in dynamic HAC models

Understanding the dynamics of high dimensional non-normal dependency structure is a challenging task. This research aims at attacking this problem by building up a hidden Markov model (HMM) for Hierarchical Archimedean Copulae (HAC), where the HAC represent a wide class of models for high dimensional dependency, and HMM is a statistical technique to describe time varying dynamics. HMM applied to HAC provide flexible modeling for high dimensional non Gaussian time series. Consistency results for both parameters and HAC structures are established in an HMM framework. The model is calibrated to exchange rate data with a VaR application, where the model's performance is compared with other dynamic models, and in the second application we simulate rainfall process.

Language
Englisch

Bibliographic citation
Series: SFB 649 Discussion Paper ; No. 2012-001

Classification
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Subject
Hidden Markov model
Hierarchical Archimedean Copulae
multivariate distribution
Markovscher Prozess
Kopula (Mathematik)
Statistische Verteilung
Theorie

Event
Geistige Schöpfung
(who)
Härdle, Wolfgang Karl
Okhrin, Ostap
Wang, Weining
Event
Veröffentlichung
(who)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(where)
Berlin
(when)
2012

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Härdle, Wolfgang Karl
  • Okhrin, Ostap
  • Wang, Weining
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Time of origin

  • 2012

Other Objects (12)