LANDSCAPE OF NEURAL ARCHITECTURE SEARCH ACROSS SENSORS: HOW MUCH DO THEY DIFFER?
Abstract. With the rapid rise of neural architecture search, the ability to understand its complexity from the perspective of a search algorithm is desirable. Recently, Traoré et al. have proposed the framework of Fitness Landscape Footprint to help describe and compare neural architecture search problems. It attempts at describing why a search strategy might be successful, struggle or fail on a target task. Our study leverages this methodology in the context of searching across sensors, including sensor data fusion. In particular, we apply the Fitness Landscape Footprint to the real-world image classification problem of So2Sat LCZ42, in order to identify the most beneficial sensor to our neural network hyper-parameter optimization problem. From the perspective of distributions of fitness, our findings indicate a similar behaviour of the CNN search space for all sensors: the longer the training time, the larger the overall fitness, and more flatness in the landscapes (less ruggedness and deviation). Regarding sensors, the better the fitness they enable (Sentinel-2), the better the search trajectories (smoother, higher persistence). Results also indicate very similar search behaviour for sensors that can be decently fitted by the search space (Sentinel-2 and fusion).
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
LANDSCAPE OF NEURAL ARCHITECTURE SEARCH ACROSS SENSORS: HOW MUCH DO THEY DIFFER? ; volume:V-3-2022 ; year:2022 ; pages:217-224 ; extent:8
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; V-3-2022 (2022), 217-224 (gesamt 8)
- Urheber
-
Traoré, K. R.
Camero, A.
Zhu, X. X.
- DOI
-
10.5194/isprs-annals-V-3-2022-217-2022
- URN
-
urn:nbn:de:101:1-2022051905290871017341
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:33 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Traoré, K. R.
- Camero, A.
- Zhu, X. X.