LANDSCAPE OF NEURAL ARCHITECTURE SEARCH ACROSS SENSORS: HOW MUCH DO THEY DIFFER?

Abstract. With the rapid rise of neural architecture search, the ability to understand its complexity from the perspective of a search algorithm is desirable. Recently, Traoré et al. have proposed the framework of Fitness Landscape Footprint to help describe and compare neural architecture search problems. It attempts at describing why a search strategy might be successful, struggle or fail on a target task. Our study leverages this methodology in the context of searching across sensors, including sensor data fusion. In particular, we apply the Fitness Landscape Footprint to the real-world image classification problem of So2Sat LCZ42, in order to identify the most beneficial sensor to our neural network hyper-parameter optimization problem. From the perspective of distributions of fitness, our findings indicate a similar behaviour of the CNN search space for all sensors: the longer the training time, the larger the overall fitness, and more flatness in the landscapes (less ruggedness and deviation). Regarding sensors, the better the fitness they enable (Sentinel-2), the better the search trajectories (smoother, higher persistence). Results also indicate very similar search behaviour for sensors that can be decently fitted by the search space (Sentinel-2 and fusion).

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
LANDSCAPE OF NEURAL ARCHITECTURE SEARCH ACROSS SENSORS: HOW MUCH DO THEY DIFFER? ; volume:V-3-2022 ; year:2022 ; pages:217-224 ; extent:8
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; V-3-2022 (2022), 217-224 (gesamt 8)

Urheber
Traoré, K. R.
Camero, A.
Zhu, X. X.

DOI
10.5194/isprs-annals-V-3-2022-217-2022
URN
urn:nbn:de:101:1-2022051905290871017341
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:33 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Traoré, K. R.
  • Camero, A.
  • Zhu, X. X.

Ähnliche Objekte (12)