In Situ Nanomechanical Characterization Techniques for Soft Bioelectronic Interfaces and Their Building Blocks

Abstract: Soft bioelectronic interfaces constitute a paradigm shift for biomedical devices. High‐resolution monitoring and stimulation of physiological processes in vivo are becoming possible with minimally invasive devices operated without inflicting tissue damage or discomfort over prolonged timescales. However, the development and commercialization of such interfaces still must address significant challenges. Biological tissue is subjected to continuous motion and the related device deformations can easily trigger fracture or delamination of the device components, putting long‐term durability of soft implants at risk. In this review, an overview of experimental techniques for testing mechanical properties and failure mechanisms of soft bioelectronic devices at the nanoscale while the deformation takes place (in situ) is provided. Through the tensile test, bending test, nanoindentation, and micropillar compression test, precise measurements of the mechanical properties of individual building blocks and the interfaces themselves can be obtained. Such parameters are crucial to design, model, and optimize the device's performance. Then, recent examples of how this information guides design and optimization of soft bioelectronic interfaces and devices for healthcare, robotics, and human–machine interfaces is provided. Last of all, future research that is needed to fully achieve long‐term soft bioelectronic interfaces for integration with the human body is discussed.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
In Situ Nanomechanical Characterization Techniques for Soft Bioelectronic Interfaces and Their Building Blocks ; day:16 ; month:10 ; year:2023 ; extent:16
Advanced Materials Technologies ; (16.10.2023) (gesamt 16)

Creator
Cortelli, Giorgio
Cramer, Tobias
Patruno, Luca
Fraboni, Beatrice
de Miranda, Stefano

DOI
10.1002/admt.202300931
URN
urn:nbn:de:101:1-2023101715060563015843
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
2025-08-14T10:54:53+0200

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Cortelli, Giorgio
  • Cramer, Tobias
  • Patruno, Luca
  • Fraboni, Beatrice
  • de Miranda, Stefano

Other Objects (12)