Arbeitspapier
RGAP: output gap estimation in R
Assessing potential output and the output gap is essential for policy-making and fiscal surveillance. The European Commission proposes a production function methodology that involves the estimation of two classes of Gaussian state space models. This paper presents the R package RGAP which features a flexible modeling framework for the appropriate bivariate unobserved component models and offers frequentist as well as Bayesian estimation techniques. Additional functionalities include direct access to the AMECO database and automated model selection procedures. Multiple illustrative examples outline data preparation, model specification, and estimation processes using RGAP.
- Sprache
-
Englisch
- Erschienen in
-
Series: KOF Working Papers ; No. 503
- Klassifikation
-
Wirtschaft
Bayesian Analysis: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Econometric Software
Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
Price Level; Inflation; Deflation
Business Fluctuations; Cycles
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Fiscal Policy
- Thema
-
business cycle
output gap
potential output
state space models
Kalman filter and smoother
Gibbs sampling
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Streicher, Sina
- Ereignis
-
Veröffentlichung
- (wer)
-
ETH Zurich, KOF Swiss Economic Institute
- (wo)
-
Zurich
- (wann)
-
2022
- DOI
-
doi:10.3929/ethz-b-000552089
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Streicher, Sina
- ETH Zurich, KOF Swiss Economic Institute
Entstanden
- 2022