Arbeitspapier
When Inequality Matters for Macro and Macro Matters for Inequality
We develop an efficient and easy-to-use computational method for solving a wide class of general equilibrium heterogeneous agent models with aggregate shocks, together with an open source suite of codes that implement our algorithms in an easy-to-use toolbox. Our method extends standard linearization techniques and is designed to work in cases when inequality matters for the dynamics of macroeconomic aggregates. We present two applications that analyze a two-asset incomplete markets model parameterized to match the distribution of income, wealth, and marginal propensities to consume. First, we show that our model is consistent with two key features of aggregate consumption dynamics that are difficult to match with representative agent models: (i) the sensitivity of aggregate consumption to predictable changes in aggregate income and (ii) the relative smoothness of aggregate consumption. Second, we extend the model to feature capital-skill complementarity and show how factor-specific productivity shocks shape dynamics of income and consumption inequality.
- Sprache
-
Englisch
- Erschienen in
-
Series: CESifo Working Paper ; No. 6581
- Klassifikation
-
Wirtschaft
General Economics and Teaching
Mathematical and Quantitative Methods: General
Macroeconomics and Monetary Economics: General
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Ahn, SeHyoun
Kaplan, Greg
Moll, Benjamin
Winberry, Thomas
Wolf, Christian
- Ereignis
-
Veröffentlichung
- (wer)
-
Center for Economic Studies and ifo Institute (CESifo)
- (wo)
-
Munich
- (wann)
-
2017
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Ahn, SeHyoun
- Kaplan, Greg
- Moll, Benjamin
- Winberry, Thomas
- Wolf, Christian
- Center for Economic Studies and ifo Institute (CESifo)
Entstanden
- 2017