Artikel

Mathematical model for choosing counterparty when assessing information security risks

The need to assess the risks of the trustworthiness of counterparties is increasing every year. The identification of increasing cases of unfair behavior among counterparties only confirms the relevance of this topic. The existing work in the field of information and economic security does not create a reasonable methodology that allows for a comprehensive study and an adequate assessment of a counterparty (for example, a developer company) in the field of software design and development. The purpose of this work is to assess the risks of a counterparty's trustworthiness in the context of the digital transformation of the economy, which in turn will reduce the risk of offenses and crimes that constitute threats to the security of organizations. This article discusses the main methods used in the construction of a mathematical model for assessing the trustworthiness of a counterparty. The main difficulties in assessing the accuracy and completeness of the model are identified. The use of cross-validation to eliminate difficulties in building a model is described. The developed model, using machine learning methods, gives an accurate result with a small number of compared counterparties, which corresponds to the order of checking a counterparty in a real system. The results of calculations in this model show the possibility of using machine learning methods in assessing the risks of counterparty trustworthiness.

Sprache
Englisch

Erschienen in
Journal: Risks ; ISSN: 2227-9091 ; Volume: 9 ; Year: 2021 ; Issue: 7 ; Pages: 1-13 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
model
trustworthiness
risks
information and analytical systems
machine learning

Ereignis
Geistige Schöpfung
(wer)
Koltays, Andrey
Konev, Anton
Shelupanov, Alexander
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2021

DOI
doi:10.3390/risks9070133
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Koltays, Andrey
  • Konev, Anton
  • Shelupanov, Alexander
  • MDPI

Entstanden

  • 2021

Ähnliche Objekte (12)