Arbeitspapier
Examining the structure of spatial health effects in Germany using Hierarchical Bayes Models
This paper uses Hierarchical Bayes Models to model and estimate spatial health effects in Germany. We combine rich individual-level household panel data from the German SOEP with administrative county-level data to estimate spatial county-level health dependencies. As dependent variable we use the generic, continuous, and quasi-objective SF12 health measure. We find strong and highly significant spatial dependencies and clusters. The strong and systematic county-level impact is equivalent to 0.35 standard deviations in health. Even 20 years after German reunification, we detect a clear spatial East-West health pattern that equals an age impact on health of up to 5 life years for a 40-year old.
- Sprache
-
Englisch
- Erschienen in
-
Series: SOEPpapers on Multidisciplinary Panel Data Research ; No. 620
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Bayesian Analysis: General
Health Behavior
Health and Inequality
Health: Government Policy; Regulation; Public Health
- Thema
-
Spatial health effects
Hierarchical Bayes Models
Germany
SOEP
SF12
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Eibich, Peter
Ziebarth, Nicolas R.
- Ereignis
-
Veröffentlichung
- (wer)
-
Deutsches Institut für Wirtschaftsforschung (DIW)
- (wo)
-
Berlin
- (wann)
-
2013
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Eibich, Peter
- Ziebarth, Nicolas R.
- Deutsches Institut für Wirtschaftsforschung (DIW)
Entstanden
- 2013