Arbeitspapier

Examining the structure of spatial health effects in Germany using Hierarchical Bayes Models

This paper uses Hierarchical Bayes Models to model and estimate spatial health effects in Germany. We combine rich individual-level household panel data from the German SOEP with administrative county-level data to estimate spatial county-level health dependencies. As dependent variable we use the generic, continuous, and quasi-objective SF12 health measure. We find strong and highly significant spatial dependencies and clusters. The strong and systematic county-level impact is equivalent to 0.35 standard deviations in health. Even 20 years after German reunification, we detect a clear spatial East-West health pattern that equals an age impact on health of up to 5 life years for a 40-year old.

Sprache
Englisch

Erschienen in
Series: SOEPpapers on Multidisciplinary Panel Data Research ; No. 620

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Bayesian Analysis: General
Health Behavior
Health and Inequality
Health: Government Policy; Regulation; Public Health
Thema
Spatial health effects
Hierarchical Bayes Models
Germany
SOEP
SF12

Ereignis
Geistige Schöpfung
(wer)
Eibich, Peter
Ziebarth, Nicolas R.
Ereignis
Veröffentlichung
(wer)
Deutsches Institut für Wirtschaftsforschung (DIW)
(wo)
Berlin
(wann)
2013

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Eibich, Peter
  • Ziebarth, Nicolas R.
  • Deutsches Institut für Wirtschaftsforschung (DIW)

Entstanden

  • 2013

Ähnliche Objekte (12)