Discrete nonlinear elastodynamics in a port‐Hamiltonian framework

Abstract: We provide a fully nonlinear port‐Hamiltonian formulation for discrete elastodynamical systems as well as a structure‐preserving time discretization. The governing equations are obtained in a variational manner and represent index‐1 differential algebraic equations. Performing an index reduction, one obtains the port‐Hamiltonian state space model, which features the nonlinear strains as an independent state next to position and velocity. Moreover, hyperelastic material behavior is captured in terms of a nonlinear stored energy function. The model exhibits passivity and losslessness and has an underlying symmetry yielding the conservation of angular momentum. We perform temporal discretization using the midpoint discrete gradient, such that the beneficial properties are inherited by the developed time stepping scheme in a discrete sense. The numerical results obtained in a representative example are demonstrated to validate the findings.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Discrete nonlinear elastodynamics in a port‐Hamiltonian framework ; day:15 ; month:09 ; year:2023 ; extent:9
Proceedings in applied mathematics and mechanics ; (15.09.2023) (gesamt 9)

Creator
Kinon, Philipp L.
Thoma, Tobias
Betsch, Peter
Kotyczka, Paul

DOI
10.1002/pamm.202300144
URN
urn:nbn:de:101:1-2023091515302072471023
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:52 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)