Arbeitspapier
Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice
Energy and agricultural commodities and markets have been examined extensively, albeit separately, for a number of years. In the energy literature, the returns, volatility and volatility spillovers (namely, the delayed effect of a returns shock in one asset on the subsequent volatility or covolatility in another asset), among alternative energy commodities, such as oil, gasoline and ethanol across different markets, have been analysed using a variety of univariate and multivariate models, estimation techniques, data sets, and time frequencies. A similar comment applies to the separate theoretical and empirical analysis of a wide range of agricultural commodities and markets. Given the recent interest and emphasis in bio-fuels and green energy, especially bio-ethanol, which is derived from a range of agricultural products, it is not surprising that there is a topical and developing literature on the spillovers between energy and agricultural markets. Modelling and testing spillovers between the energy and agricultural markets has typically been based on estimating multivariate conditional volatility models, specifically the BEKK and DCC models. A serious technical deficiency is that the Quasi-Maximum Likelihood Estimates (QMLE) of a full BEKK matrix, which is typically estimated in examining volatility spillover effects, has no asymptotic properties, except by assumption, so that no statistical test of volatility spillovers is possible. Some papers in the literature have used the DCC model to test for volatility spillovers. However, it is well known in the financial econometrics literature that the DCC model has no regularity conditions, and that the QMLE of the parameters of DCC has no asymptotic properties, so that there is no valid statistical testing of volatility spillovers. The purpose of the paper is to evaluate the theory and practice in testing for volatility spillovers between energy and agricultural markets using the multivariate BEKK and DCC models, and to make recommendations as to how such spillovers might be tested using valid statistical techniques. Three new definitions of volatility and covolatility spillovers are given, and the different models used in empirical applications are evaluated in terms of the new definitions and statistical criteria.
- Sprache
-
Englisch
- Erschienen in
-
Series: Tinbergen Institute Discussion Paper ; No. 15-077/III
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Financial Econometrics
Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
Economic Development: Agriculture; Natural Resources; Energy; Environment; Other Primary Products
Alternative Energy Sources
- Thema
-
Energy markets
agricultural markets
volatility and covolatility spillovers
univariate and multivariate conditional volatility models
BEKK
DCC
definitions of spillovers
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Chang, Chia-Lin
Li, Yiying
McAleer, Michael
- Ereignis
-
Veröffentlichung
- (wer)
-
Tinbergen Institute
- (wo)
-
Amsterdam and Rotterdam
- (wann)
-
2015
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Chang, Chia-Lin
- Li, Yiying
- McAleer, Michael
- Tinbergen Institute
Entstanden
- 2015