Consideration of chemically‐induced damage in a thermo‐electrically coupled system
Abstract: Electro‐chemical machining (ECM) allows the removal of material based on the effect of anodic dissolution and without mechanical contact. Thus, it avoids tool abrasion as well as influencing the surface quality, for instance due to formed dislocations and/or damage. Due to that, ECM is a very attractive machining process for high strength materials such as titanium. The effect of anodic dissolution is a result of a present electric current in combination with the contact with an electrolyte. We show a material model, which enables to predict the mentioned effect by use of a chemically motivated damage of the material based on Faraday's law. After the approach's introduction, we will address its consideration within a thermo‐electrically coupled finite element method by using effective material parameters that differ between metal and electrolyte. The presentation is completed by the numerical results, which show the method's ability to simulate the ECM process.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Consideration of chemically‐induced damage in a thermo‐electrically coupled system ; volume:22 ; number:1 ; year:2023 ; extent:0
Proceedings in applied mathematics and mechanics ; 22, Heft 1 (2023) (gesamt 0)
- Creator
- DOI
-
10.1002/pamm.202200302
- URN
-
urn:nbn:de:101:1-2023032514073116822540
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:57 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Waimann, Johanna
- van der Velden, Tim
- Schmidt, Annika
- Ritzert, Stephan
- Reese, Stefanie