Artikel

Joshi's split tree for option pricing

In a thorough study of binomial trees, Joshi introduced the split tree as a two-phase binomial tree designed to minimize oscillations, and demonstrated empirically its outstanding performance when applied to pricing American put options. Here we introduce a "flexible" version of Joshi's tree, and develop the corresponding convergence theory in the European case: we find a closed form formula for the coefficients of 1/n and 1/n3/2 in the expansion of the error. Then we define several optimized versions of the tree, and find closed form formulae for the parameters of these optimal variants. In a numerical study, we found that in the American case, an optimized variant of the tree significantly improved the performance of Joshi's original split tree.

Language
Englisch

Bibliographic citation
Journal: Risks ; ISSN: 2227-9091 ; Volume: 8 ; Year: 2020 ; Issue: 3 ; Pages: 1-26 ; Basel: MDPI

Classification
Wirtschaft
Subject
binomial option pricing
error analysis for non-self-similar binomial trees
American options
Black-Scholes

Event
Geistige Schöpfung
(who)
Leduc, Guillaume
Hot, Merima Nurkanovic
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2020

DOI
doi:10.3390/risks8030081
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Leduc, Guillaume
  • Hot, Merima Nurkanovic
  • MDPI

Time of origin

  • 2020

Other Objects (12)