Arbeitspapier

Forecasting U.S. Recessions and Economic Activity

This paper proposes a simple nonlinear framework to produce real-time multi-horizon forecasts of economic activity as well as conditional forecasts that depend on whether the horizon of interest belongs to a recessionary episode or not. Our forecasting models take the form of an autoregression that is augmented with either a probability of recession or an inverse Mills ratio. Our most parsimonious augmented autoregressive model delivers more accurate out-of-sample forecasts of GDP growth than the linear and nonlinear benchmark models considered, and this is particularly true during recessions. Our approach suits particularly well for the real-time prediction of final releases of economic series before they become available to policy makers. We use standard probit models to generate the Term Structure of recession probabilities at every period. Interestingly, the dynamic patterns of these Term Structures are informative about the business cycle turning points.

Language
Englisch

Bibliographic citation
Series: Document de travail ; No. 2018-14

Classification
Wirtschaft

Event
Geistige Schöpfung
(who)
Kotchoni, Rachidi
Stevanovic, Dalibor
Event
Veröffentlichung
(who)
Université du Québec à Montréal, École des sciences de la gestion (ESG UQAM), Département des sciences économiques
(where)
Montréal
(when)
2018

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Kotchoni, Rachidi
  • Stevanovic, Dalibor
  • Université du Québec à Montréal, École des sciences de la gestion (ESG UQAM), Département des sciences économiques

Time of origin

  • 2018

Other Objects (12)