Research on Deep Learning-Based Vehicle and Pedestrian Object Detection Algorithms

Abstract. As urbanization accelerates, traffic congestion and frequent accidents have become prominent issues, prompting the development of intelligent transportation systems. This paper focuses on the research of vehicle and pedestrian detection algorithms to improve detection accuracy in complex traffic environments. Considering the limitations of traditional object detection algorithms in complex situations, this study adopts the deep learning-based YOLOv8 algorithm and introduces the Coordinate Attention (CA) module to enhance the model's feature extraction and localization capabilities. Experimental results show that the improved YOLOv8 network achieves a 1.1% increase in detection accuracy while maintaining its original speed. Furthermore, this paper constructs a vehicle and pedestrian dataset suitable for Chinese traffic scenes, providing an effective solution for autonomous driving assistance systems. Overall, this study holds significant reference value for vehicle and pedestrian detection in the field of intelligent transportation.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Research on Deep Learning-Based Vehicle and Pedestrian Object Detection Algorithms ; volume:XLVIII-4/W10-2024 ; year:2024 ; pages:213-220 ; extent:8
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; XLVIII-4/W10-2024 (2024), 213-220 (gesamt 8)

Urheber
Zhang, Xin
Huang, He
Yang, Junxing
Jiang, Shan

DOI
10.5194/isprs-archives-XLVIII-4-W10-2024-213-2024
URN
urn:nbn:de:101:1-2406060427180.529699893191
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:51 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Zhang, Xin
  • Huang, He
  • Yang, Junxing
  • Jiang, Shan

Ähnliche Objekte (12)