Truly Tiny Acoustic Biomolecules for Ultrasound Imaging and Therapy

Abstract: Nanotechnology offers significant advantages for medical imaging and therapy, including enhanced contrast and precision targeting. However, integrating these benefits into ultrasonography is challenging due to the size and stability constraints of conventional bubble‐based agents. Here bicones, truly tiny acoustic contrast agents based on gas vesicles (GVs), a unique class of air‐filled protein nanostructures naturally produced in buoyant microbes, are described. It is shown that these sub‐80 nm particles can be effectively detected both in vitro and in vivo, infiltrate tumors via leaky vasculature, deliver potent mechanical effects through ultrasound‐induced inertial cavitation, and are easily engineered for molecular targeting, prolonged circulation time, and payload conjugation.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Truly Tiny Acoustic Biomolecules for Ultrasound Imaging and Therapy ; day:15 ; month:03 ; year:2024 ; extent:11
Advanced materials ; (15.03.2024) (gesamt 11)

Creator
Ling, Bill
Gungoren, Bilge
Yao, Yuxing
Dutka, Przemysław
Vassallo, Reid
Nayak, Rohit
Smith, Cameron A. B.
Lee, Justin
Swift, Margaret B.
Shapiro, Mikhail G.

DOI
10.1002/adma.202307106
URN
urn:nbn:de:101:1-2024031613072153440312
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 11:01 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Ling, Bill
  • Gungoren, Bilge
  • Yao, Yuxing
  • Dutka, Przemysław
  • Vassallo, Reid
  • Nayak, Rohit
  • Smith, Cameron A. B.
  • Lee, Justin
  • Swift, Margaret B.
  • Shapiro, Mikhail G.

Other Objects (12)