Using Vision Transformers for Classifying Surgical Tools in Computer Aided Surgeries

Abstract: Automated laparoscopic video analysis is essential for assisting surgeons during computer aided medical procedures. Nevertheless, it faces challenges due to complex surgical scenes and limited annotated data. Most of the existing methods for classifying surgical tools in laparoscopic surgeries rely on conventional deep learning methods such as convolutional and recurrent neural networks. This paper explores the use of pure self-attention based models-Vision Transformers for classifying both single-label (SL) and multi-label (ML) frames in Laparoscopic surgeries. The proposed SL and ML models were comprehensively evaluated on the Cholec80 surgical workflow dataset using 5-fold cross validation. Experimental results showed an excellent classification performance with a mean average precision mAP=95.8% that outperforms conventional deep learning multi-label models developed in previous studies. Our results open new avenues for further research on the use of deep transformer models for surgical tool detection in modern operating theaters.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Using Vision Transformers for Classifying Surgical Tools in Computer Aided Surgeries ; volume:10 ; number:4 ; year:2024 ; pages:232-235 ; extent:4
Current directions in biomedical engineering ; 10, Heft 4 (2024), 232-235 (gesamt 4)

Urheber
El Moaqet, Hisham
Janini, Rami
Abdulbaki Alshirbaji, Tamer
Aldeen Jalal, Nour
Möller, Knut

DOI
10.1515/cdbme-2024-2056
URN
urn:nbn:de:101:1-2412181802205.276932104545
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:37 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • El Moaqet, Hisham
  • Janini, Rami
  • Abdulbaki Alshirbaji, Tamer
  • Aldeen Jalal, Nour
  • Möller, Knut

Ähnliche Objekte (12)