Artikel

A two-population extension of the exponential smoothing state space model with a smoothing penalisation scheme

The joint modelling of mortality rates for multiple populations has gained increasing popularity in areas such as government planning and insurance pricing. Sub-groups of a population often preserve similar mortality features with short-term deviations from the common trend. Recent studies indicate that the exponential smoothing state space (ETS) model can produce outstanding prediction performance, while it fails to guarantee the consistency across neighbouring ages. Apart from that, single-population models such as the famous Lee-Carter (LC) may produce divergent forecasts between different populations in the long run and thus lack the property of the so-called coherence. This study extends the original ETS model to a two-population version (2-ETS) and imposes a smoothing penalisation scheme to reduce inconsistency of forecasts across adjacent ages. The exponential smoothing parameters in the 2-ETS model are fitted by a Fourier functional form to reduce dimensionality and thus improve estimation efficiency. We evaluate the performance of the proposed model via an empirical study using Australian female and male population data. Our results demonstrate the superiority of the 2-ETS model over the LC and ETS as well as two multi-population methods - the augmented common factor model (LL) and coherent functional data model (CFDM) regarding forecast accuracy and coherence.

Language
Englisch

Bibliographic citation
Journal: Risks ; ISSN: 2227-9091 ; Volume: 8 ; Year: 2020 ; Issue: 3 ; Pages: 1-18 ; Basel: MDPI

Classification
Wirtschaft
Subject
mortality forecasting
exponential smoothing
penalty scheme
coherent mortality models

Event
Geistige Schöpfung
(who)
Shi, Yanlin
Tang, Sixian
Li, Jackie
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2020

DOI
doi:10.3390/risks8030067
Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Shi, Yanlin
  • Tang, Sixian
  • Li, Jackie
  • MDPI

Time of origin

  • 2020

Other Objects (12)