Forecasting of residential unit’s heat demands: a comparison of machine learning techniques in a real-world case study
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource, 1 online resource.
- Language
-
Englisch
- Bibliographic citation
-
Forecasting of residential unit’s heat demands: a comparison of machine learning techniques in a real-world case study ; day:9 ; month:5 ; year:2023 ; pages:1-35
Energy systems ; (9.5.2023), 1-35
- Classification
-
Natürliche Ressourcen, Energie und Umwelt
- Creator
- Contributor
-
SpringerLink (Online service)
- DOI
-
10.1007/s12667-023-00579-y
- URN
-
urn:nbn:de:101:1-2023090708553709268845
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:50 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Kemper, Neele
- Heider, Michael
- Pietruschka, Dirk
- Hähner, Jörg
- SpringerLink (Online service)