Forecasting of residential unit’s heat demands: a comparison of machine learning techniques in a real-world case study

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource, 1 online resource.
Language
Englisch

Bibliographic citation
Forecasting of residential unit’s heat demands: a comparison of machine learning techniques in a real-world case study ; day:9 ; month:5 ; year:2023 ; pages:1-35
Energy systems ; (9.5.2023), 1-35

Classification
Natürliche Ressourcen, Energie und Umwelt

Creator
Kemper, Neele
Heider, Michael
Pietruschka, Dirk
Hähner, Jörg
Contributor
SpringerLink (Online service)

DOI
10.1007/s12667-023-00579-y
URN
urn:nbn:de:101:1-2023090708553709268845
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:50 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)