Artikel

Interval forecasts of a novelty hybrid model for wind speeds

The utilization of wind energy, as a booming technology in the field of renewable energies, has been highly regarded around the world. Quantification of uncertainties associated with accurate wind speed forecasts is essential for regulating wind power generation and integration. However, it remains difficult work primarily due to the stochastic and nonlinear characteristics of wind speed series. Traditional models for wind speed forecasting mostly focus on generating certain predictive values, which cannot properly handle uncertainties. For quantifying potential uncertainties, a hybrid model constructed by the Cuckoo Search Optimization (CSO)-based Back Propagation Neural Network (BPNN) is proposed to establish wind speed interval forecasts (IFs) by estimating the lower and upper bounds. The quality of IFs is assessed quantitatively using IFs coverage probability (IFCP) and IFs normalized average width (IFNAW). Moreover, to assess the overall quality of IFs comprehensively, a tradeoff between informativeness (IFNAW) and validity (IFCP) of IFs is examined by coverage width-based criteria (CWC). As an applicative study, wind speeds from the Xinjiang Region in China are used to validate the proposed hybrid model. The results demonstrate that the proposed model can construct higher quality IFs for short-term wind speed forecasts.

Sprache
Englisch

Erschienen in
Journal: Energy Reports ; ISSN: 2352-4847 ; Volume: 1 ; Year: 2015 ; Pages: 8-16 ; Amsterdam: Elsevier

Klassifikation
Wirtschaft

Ereignis
Geistige Schöpfung
(wer)
Qin, Shanshan
Liu, Feng
Wang, Jianzhou
Song, Yiliao
Ereignis
Veröffentlichung
(wer)
Elsevier
(wo)
Amsterdam
(wann)
2015

DOI
doi:10.1016/j.egyr.2014.11.003
Handle
Letzte Aktualisierung
10.03.2025, 11:46 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Qin, Shanshan
  • Liu, Feng
  • Wang, Jianzhou
  • Song, Yiliao
  • Elsevier

Entstanden

  • 2015

Ähnliche Objekte (12)