Artikel

A novel clustering method for breaking down the symmetric multiple traveling salesman problem

Purpose: This study proposes a new two-stage clustering method to break down the symmetric multiple traveling salesman problem (mTSP) into several single standard traveling salesman problems, each of which can then be solved separately using a heuristic optimization algorithm. Design/methodology/approach: In the initial stage, a modified form of factor analysis is used to identify clusters of cities. In the second stage, the cities are allocated to the identified clusters using an integer-programming model. A comparison with the k-means++ clustering algorithm, one of the most popular clustering algorithms, was made to evaluate the performance of the proposed method in terms of four objective criteria. Findings: Computational results and comparison on 63 problems revealed that the proposed method is promising for producing quality clusters and thus for enhancing the performance of heuristic optimization algorithms in solving the mTSP. Originality/value: Unlike previous studies, this study tackles the issue of improving the performance of clustering-based optimization approaches in solving the mTSP by proposing a new clustering method that produces better cluster solutions rather than by proposing a new or improved version of a heuristic optimization algorithm for finding optimal routes.

Sprache
Englisch

Erschienen in
Journal: Journal of Industrial Engineering and Management (JIEM) ; ISSN: 2013-0953 ; Volume: 14 ; Year: 2021 ; Issue: 2 ; Pages: 199-218 ; Barcelona: OmniaScience

Klassifikation
Management
Thema
Clustering
factor analysis
k-means
multiple traveling salesmen

Ereignis
Geistige Schöpfung
(wer)
Hamdan, Basma
Bashir, Hamdi
Cheaitou, Ali
Ereignis
Veröffentlichung
(wer)
OmniaScience
(wo)
Barcelona
(wann)
2021

DOI
doi:10.3926/jiem.3287
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Hamdan, Basma
  • Bashir, Hamdi
  • Cheaitou, Ali
  • OmniaScience

Entstanden

  • 2021

Ähnliche Objekte (12)