Surface Crouzeix‐Raviart element for the Bochner Laplacian equation

Abstract: Recently, a nonconforming finite element method has been derived for vector valued flow problems on the sphere. In the approach, the flow is approximated via edge integration through the Crouzeix‐Raviart element. The discretization is realized on local flat triangles which coincide with the surface of the sphere on the edge midpoints. In this contribution, we derive an energy error estimate for this discretization that takes into account the geometric error as well as the error to the solution of the partial differential equation. The analysis is performed for a vector Laplace problem which includes covariant derivatives of tangential vector fields. The latter are closely related to operators that occur in flow problems on the surface.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Surface Crouzeix‐Raviart element for the Bochner Laplacian equation ; day:19 ; month:09 ; year:2023 ; extent:8
Proceedings in applied mathematics and mechanics ; (19.09.2023) (gesamt 8)

Urheber

DOI
10.1002/pamm.202300207
URN
urn:nbn:de:101:1-2023092015361102411607
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:51 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)