Arbeitspapier

Secondary structure classification of amino-acid sequences using state-space modeling

The secondary structure classification of amino acid sequences can be carried out by a statistical analysis of sequence and structure data using state-space models. Aiming at this classification, a modified filter algorithm programmed in S is applied to data of three proteins. The application leads to correct classifications of two proteins even when using relatively simple estimation methods for the parameters of the state-space models. Furthermore, it has been shown that the assumed initial distribution strongly influences the classification results referring to two proteins.

Language
Englisch

Bibliographic citation
Series: Technical Report ; No. 2001,49

Subject
Secondary structure classification
discrete state-space models
filtering

Event
Geistige Schöpfung
(who)
Brunnert, Marcus
Krahnke, Tillmann
Urfer, Wolfgang
Event
Veröffentlichung
(who)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(where)
Dortmund
(when)
2001

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Brunnert, Marcus
  • Krahnke, Tillmann
  • Urfer, Wolfgang
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Time of origin

  • 2001

Other Objects (12)