Artikel

An algorithm to manage transportation logistics that considers sabotage risk

This paper presents an algorithm to solve the multilevel location-allocation problem when sabotage risk is considered (MLLAP-SB). Sabotage risk is the risk that a deliberate act of sabotage will happen in a living area or during the transportation of a vehicle. This can change the way decisions are made about the transportation problem when it is considered. The mathematical model of the MLLAP-SB is first presented and solved to optimality by using Lingo v. 11 optimization software, but it can solve only small numbers of test instances. Second, two heuristics are presented to solve large numbers of test instances that Lingo cannot solve to optimality within a reasonable time. The original differential evolution (DE) algorithm and the extended version of DE-the modified differential evolution (MDE) algorithm-are presented to solve the MLLAP-SB. From the computational result, when solving small numbers of test instances in which Lingo is able to find the optimality, DE and MDE are able to find a 100% optimal solution while requiring much lower computational time. Lingo uses an average 96,156.67 s to solve the problem, while DE and MDE use only 104 and 90 s, respectively. Solving large numbers of test instances where Lingo cannot solve the problem, MDE outperformed DE, as it found a 100% better solution than DE. MDE has an average 0.404% lower cost than DE when using a computational time of 90 min. The difference in cost between MDE and DE changes from 0.08% when using 10 min to 0.54% when using 100 min computational time. The computational result also explicitly shows that when sabotage risk is integrated into the method of solving the problem, it can reduce the average total cost from 32,772,361 baht to 30,652,360 baht, corresponding to a 9.61% reduction.

Sprache
Englisch

Erschienen in
Journal: Administrative Sciences ; ISSN: 2076-3387 ; Volume: 8 ; Year: 2018 ; Issue: 3 ; Pages: 1-17 ; Basel: MDPI

Klassifikation
Öffentliche Verwaltung
Thema
location-allocation problem
renewable energy crops
differential evolution algorithm
modified differential evolution algorithm
risk conditions

Ereignis
Geistige Schöpfung
(wer)
Chomchalao, Chaiya
Kaewman, Sasitorn
Pitakaso, Rapeepan
Sethanan, Kanchana
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2018

DOI
doi:10.3390/admsci8030039
Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Chomchalao, Chaiya
  • Kaewman, Sasitorn
  • Pitakaso, Rapeepan
  • Sethanan, Kanchana
  • MDPI

Entstanden

  • 2018

Ähnliche Objekte (12)