Arbeitspapier

Robust signal extraction for on-line monitoring data

Data from the automatic monitoring of intensive care patients exhibits trends, outliers, and level changes as well as periods of relative constancy. All this is overlaid with a high level of noise and there are dependencies between the different items measured. Current monitoring systems tend to deliver too many false warnings which reduces their acceptability by medical staff. The challenge is to develop a method which allows a fast and reliable denoising of the data and which can separate artifacts from clinical relevant structural changes in the patients condition (Gather et al., 2002). A simple median filter works well as long as there is no substantial trend in the data but improvements may be possible by approximating the data by a local linear trend. As a first step in this programme the paper examines the relative merits of the L1 regression, the repeated median (Siegel, 1982) and the least median of squares (Hampel, 1975, Rousseeuw, 1984). The question of dependency between different items is a topic for future research.

Sprache
Englisch

Erschienen in
Series: Technical Report ; No. 2002,02

Thema
Linear regression
Signal extraction
Level change
Trend
Outliers
Small-sample efficiency

Ereignis
Geistige Schöpfung
(wer)
Davies, P. Laurie
Fried, Roland
Gather, Ursula
Ereignis
Veröffentlichung
(wer)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(wo)
Dortmund
(wann)
2002

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Davies, P. Laurie
  • Fried, Roland
  • Gather, Ursula
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Entstanden

  • 2002

Ähnliche Objekte (12)