Journal article | Zeitschriftenartikel
Reduction of nonresponse bias through case prioritization
"How response rates are increased can determine the remaining nonresponse bias in estimates. Studies often target sample members that are most likely to be interviewed to maximize response rates. Instead, the authors suggest targeting likely nonrespondents from the onset of a study with a different protocol to minimize nonresponse bias. To inform the targeting of sample members, various sources of information can be utilized: paradata collected by interviewers, demographic and substantive survey data from prior waves, and administrative data. Using these data, the likelihood of any sample member becoming a nonrespondent is estimated and on those sample cases least likely to respond, a more effective, often more costly, survey protocol can be employed to gain respondent cooperation. This paper describes the two components of this approach to reducing nonresponse bias. The authors demonstrate assignment of case priority based on response propensity models, and present empirical results from the use of a different protocol for prioritized cases. In a field data collection, a random half of cases with low response propensity received higher priority and increased resources. Resources for high-priority cases were allocated as interviewer incentives. They find that they were relatively successful in predicting response outcome prior to the survey and stress the need to test interventions in order to benefit from case prioritization." (author's abstract)
- Weitere Titel
-
Reduktion des Nonresponsebias durch Priorisierung
- ISSN
-
1864-3361
- Umfang
-
Seite(n): 21-29
- Sprache
-
Englisch
- Anmerkungen
-
Status: Veröffentlichungsversion; begutachtet (peer reviewed)
- Erschienen in
-
Survey Research Methods, 4(1)
- Thema
-
Sozialwissenschaften, Soziologie
Forschungsarten der Sozialforschung
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
USA
Umfrageforschung
Antwortverhalten
Fehler
Kosten
Befragung
Schätzung
Daten
Datengewinnung
Datenqualität
Stadtsoziologie
statistische Methode
Methode
Nordamerika
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Peytchev, Andy
Riley, Sarah
Rosen, Jeff
Murphy, Joe
Lindblad, Mark
- Ereignis
-
Veröffentlichung
- (wo)
-
Deutschland
- (wann)
-
2010
- DOI
- Letzte Aktualisierung
-
21.06.2024, 16:27 MESZ
Datenpartner
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Zeitschriftenartikel
Beteiligte
- Peytchev, Andy
- Riley, Sarah
- Rosen, Jeff
- Murphy, Joe
- Lindblad, Mark
Entstanden
- 2010