Evaluation of Propeller Inspection Using Different Deployment Strategies

Abstract: In recent years, the use of Unmanned Aerial Vehicles (UAVs) for various applications has increased significantly. Among these applications, the inspection of infrastructures using UAVs has become a prominent area of research. This paper evaluates the efficiency of the YOLOv5 algorithm for propeller inspection. The algorithm's deployment across various platforms such as PC, Google Colab, and Jetson Nano is examined, with a focus on different deployment formats like PyTorch, ONNX, TensorFlow Lite, and others. The study highlights the often-overlooked importance of the deployment phase in the development of AI models and underscores its significance for the practical application of AI in real-world scenarios. Keywords— Computer vision, algorithm deployment, propeller inspection, Deployment strategies, efficiency improvement. https://www.bibliothek.tu-chemnitz.de/ojs/index.php/cs/article/view/661

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Evaluation of Propeller Inspection Using Different Deployment Strategies ; volume:10 ; number:8 ; day:23 ; month:12 ; year:2023
Embedded selforganising systems ; 10, Heft 8 (23.12.2023)

Creator
Ikmel, Ghita
Harras, Mohamed Salim
Hardt, Wolfram
El Amrani El Idrissi, Najiba

DOI
10.14464/ess.v10i8.661
URN
urn:nbn:de:101:1-2024030618441479855012
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:54 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Ikmel, Ghita
  • Harras, Mohamed Salim
  • Hardt, Wolfram
  • El Amrani El Idrissi, Najiba

Other Objects (12)