Magnetohydrodynamic Enhancement of Biofuel Cell Performance

Abstract: Biofuel cells have become an interesting alternative for the design of sustainable energy conversion systems with multiple applications ranging from biosensing and bioelectronics to autonomously moving devices. However, as an electrochemical system, their performance is intimately related to mass transport conditions. In this work, the magnetohydrodynamic (MHD) effect is studied as an easy and straightforward alternative to enhance the performance of a biofuel cell based on the enzymes glucose oxidase (GOx) and bilirubin oxidase (BOD). The synergetic effect between the electric and ionic currents, produced by the enzymatic redox reactions, and a magnetic field orthogonal to the surface of the electrodes, leads to the formation of localized magnetohydrodynamic vortexes. Such an integrated convective regime generates an increase of the bioelectrocatalytic current and its concomitant power output in the presence of the external magnetic field. In addition, by fine‐tuning the spatial arrangement of the anode and cathode, it is possible to benefit from the sum of anodic and cathodic MHD vortexes, leading to an enhanced power output of up to 300 %.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Magnetohydrodynamic Enhancement of Biofuel Cell Performance ; day:05 ; month:12 ; year:2024 ; extent:7
Chemistry - a European journal ; (05.12.2024) (gesamt 7)

Creator
Salinas, Gerardo
Safarik, Tatjana
Meneghello, Marta
Bichon, Sabrina
Gounel, Sebastien
Mano, Nicolas
Kuhn, Alexander

DOI
10.1002/chem.202403329
URN
urn:nbn:de:101:1-2412091344319.002366904601
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:33 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Salinas, Gerardo
  • Safarik, Tatjana
  • Meneghello, Marta
  • Bichon, Sabrina
  • Gounel, Sebastien
  • Mano, Nicolas
  • Kuhn, Alexander

Other Objects (12)