Biomimetic Dehydrogenative Intermolecular Formal Allylic Amidation of Branched α‐Olefins
Abstract: Allylic amide moieties are commonly encountered in natural products and are privileged structures in pharmaceuticals and agrochemicals. Moreover, because allylic amide can be to converted into an array of high‐value motifs, they have been widely employed in organic synthesis. However, the development of catalytic systems for intermolecular allylic amidation of olefins, particularly branched α‐olefins, has proven to be challenging. Here, a biomimetic, synergistic catalytic method is reported that combines photoredox, cobalt, and Brønsted base catalysis for the synthesis of substituted allylic amides from branched α‐olefins and simple imides without using oxidants. This low‐cost, operationally simple method features a broad substrate scope and excellent functional group compatibility. Moreover, it is successfully used for the functionalization of several structurally complex molecules demonstrating the method's potential utility for medicinal chemistry applications. Mechanistic studies revealed that C (sp3)─N bond formation is mediated by a nitrogen‐centered radical intermediate, which is generated via a sequence involving deprotonation and single‐electron oxidation.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Biomimetic Dehydrogenative Intermolecular Formal Allylic Amidation of Branched α‐Olefins ; day:18 ; month:11 ; year:2024 ; extent:9
Advanced science ; (18.11.2024) (gesamt 9)
- Creator
-
Fu, Xiaoyang
Tian, Jiarui
Zhang, Mingjun
Jing, Yue
Liu, Yuxiu
Song, Hongjian
Wang, Qingmin
- DOI
-
10.1002/advs.202411744
- URN
-
urn:nbn:de:101:1-2411191322238.723936778529
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:25 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Fu, Xiaoyang
- Tian, Jiarui
- Zhang, Mingjun
- Jing, Yue
- Liu, Yuxiu
- Song, Hongjian
- Wang, Qingmin