Artikel

Modelling and forecasting stock price movements with serially dependent determinants

The direction of price movements are analysed under an ordered probit framework, recognising the importance of accounting for discreteness in price changes. By extending the work of Hausman et al. (1972) and Yang and Parwada (2012),This paper focuses on improving the forecast performance of the model while infusing a more practical perspective by enhancing flexibility. This is achieved by extending the existing framework to generate short term multi period ahead forecasts for better decision making, whilst considering the serial dependence structure. This approach enhances the flexibility and adaptability of the model to future price changes, particularly targeting risk minimisation. Empirical evidence is provided, based on seven stocks listed on the Australian Securities Exchange (ASX). The prediction success varies between 78 and 91 per cent for in-sample and out-of-sample forecasts for both the short term and long term.

Sprache
Englisch

Erschienen in
Journal: Risks ; ISSN: 2227-9091 ; Volume: 6 ; Year: 2018 ; Issue: 2 ; Pages: 1-22 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
ordered probit
stock prices
auto-regressive
multi-step ahead forecasts

Ereignis
Geistige Schöpfung
(wer)
Yatigammana, Rasika
Peiris, Shelton
Gerlach, Richard
Allen, David Edmund
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2018

DOI
doi:10.3390/risks6020052
Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Yatigammana, Rasika
  • Peiris, Shelton
  • Gerlach, Richard
  • Allen, David Edmund
  • MDPI

Entstanden

  • 2018

Ähnliche Objekte (12)