Arbeitspapier

Optimal Targeting in Fundraising: A Machine-Learning Approach

Ineffective fundraising lowers the resources charities can use for goods provision. We combine a field experiment and a causal machine-learning approach to increase a charity’s fundraising effectiveness. The approach optimally targets fundraising to individuals whose expected donations exceed solicitation costs. Among past donors, optimal targeting substantially increases donations (net of fundraising costs) relative to bench-marks that target everybody or no one. Instead, individuals who were previously asked but never donated should not be targeted. Further, the charity requires only publicly available geospatial information to realize the gains from targeting. We conclude that charities not engaging in optimal targeting waste resources.

Sprache
Englisch

Erschienen in
Series: CESifo Working Paper ; No. 9037

Klassifikation
Wirtschaft
Field Experiments
Altruism; Philanthropy; Intergenerational Transfers
Public Goods
Nonprofit Institutions; NGOs; Social Entrepreneurship
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Thema
fundraising
charitable giving
gift exchange
targeting
optimal policy learning
individualized treatment rules

Ereignis
Geistige Schöpfung
(wer)
Cagala, Tobias
Glogowsky, Ulrich
Rincke, Johannes
Strittmatter, Anthony
Ereignis
Veröffentlichung
(wer)
Center for Economic Studies and Ifo Institute (CESifo)
(wo)
Munich
(wann)
2021

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Cagala, Tobias
  • Glogowsky, Ulrich
  • Rincke, Johannes
  • Strittmatter, Anthony
  • Center for Economic Studies and Ifo Institute (CESifo)

Entstanden

  • 2021

Ähnliche Objekte (12)