Adaptation of the Calcium-dependent Tension Development in Ventricular Cardiomyocytes

Abstract: Today a variety of models describe the physiological behavior of the heart on a cellular level. The intracellular calcium concentration plays an important role, since it is the main driver for the active contraction of the heart. Due to different implementations of the calcium dynamics, simulating cardiac electromechanics can lead to severely different behaviors of the active tension when coupling the same tension model with different electrophysiological models. To handle these variations, we present an optimization tool that adapts the parameters of the most recent, human based tension model. The goal is to generate a physiologically valid tension development when coupled to an electrophysiological cellular model independent of the specifics of that model's calcium transient. In this work, we focus on a ventricular cell model. In order to identify the calcium-sensitive parameters, a sensitivity analysis of the tension model was carried out. In a further step, the cell model was adapted to reproduce the sarcomere length-dependent behavior of troponin C. With a maximum relative deviation of 20.3% per defined characteristic of the tension development, satisfactory results could be obtained for isometric twitch tension. Considering the length-dependent troponin handling, physiological behavior could be reproduced. In conclusion, we propose an algorithm to adapt the tension development model to any calcium transient input to achieve a physiologically valid active contraction on a cellular level. As a proof of concept, the algorithm is successfully applied to one of the most recent human ventricular cell models. This is an important step towards fully coupled electromechanical heart models, which are a valuable tool in personalized health care.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Adaptation of the Calcium-dependent Tension Development in Ventricular Cardiomyocytes ; volume:7 ; number:2 ; year:2021 ; pages:251-254 ; extent:4
Current directions in biomedical engineering ; 7, Heft 2 (2021), 251-254 (gesamt 4)

Urheber
Appel, Stephanie
Gerach, Tobias
Dössel, Olaf
Loewe, Axel

DOI
10.1515/cdbme-2021-2064
URN
urn:nbn:de:101:1-2022101214145906743682
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:23 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Appel, Stephanie
  • Gerach, Tobias
  • Dössel, Olaf
  • Loewe, Axel

Ähnliche Objekte (12)