Enhancing global maritime traffic network forecasting with gravity-inspired deep learning models
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
1 Online-Ressource.
- Language
-
Englisch
- Bibliographic citation
-
Enhancing global maritime traffic network forecasting with gravity-inspired deep learning models ; volume:14 ; number:1 ; day:19 ; month:7 ; year:2024 ; pages:1-16 ; date:12.2024
Scientific reports ; 14, Heft 1 (19.7.2024), 1-16, 12.2024
- Creator
-
Song, Ruixin
Spadon, Gabriel
Pelot, Ronald
Matwin, Stan
Soares, Amilcar
- Contributor
-
SpringerLink (Online service)
- DOI
-
10.1038/s41598-024-67552-2
- URN
-
urn:nbn:de:101:1-2410052105186.657498870020
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:37 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Song, Ruixin
- Spadon, Gabriel
- Pelot, Ronald
- Matwin, Stan
- Soares, Amilcar
- SpringerLink (Online service)