Enhancing global maritime traffic network forecasting with gravity-inspired deep learning models

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
1 Online-Ressource.
Language
Englisch

Bibliographic citation
Enhancing global maritime traffic network forecasting with gravity-inspired deep learning models ; volume:14 ; number:1 ; day:19 ; month:7 ; year:2024 ; pages:1-16 ; date:12.2024
Scientific reports ; 14, Heft 1 (19.7.2024), 1-16, 12.2024

Creator
Song, Ruixin
Spadon, Gabriel
Pelot, Ronald
Matwin, Stan
Soares, Amilcar
Contributor
SpringerLink (Online service)

DOI
10.1038/s41598-024-67552-2
URN
urn:nbn:de:101:1-2410052105186.657498870020
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:37 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Song, Ruixin
  • Spadon, Gabriel
  • Pelot, Ronald
  • Matwin, Stan
  • Soares, Amilcar
  • SpringerLink (Online service)

Other Objects (12)