AI-driven Optimization in Healthcare: the Diagnostic Process

Abstract: Purpose: Process optimization in healthcare using artificial intelligence (AI) is still in its infancy. In this study, we address the research question "To what extent can an AI-driven chatbot help to optimize the diagnostic process?" Design/ Method/ Approach: First, we developed a mathematical model for the utility (i.e., total satisfaction received from consuming a good or service) resulting from the diagnostic process in primary healthcare. We calculated this model using MS Excel. Second, after identifying the main pain points for optimization (e.g., waiting time in the queue), we ran a small experiment (n=25) in which we looked at time to diagnosis, average waiting time, and their standard deviations. In addition, we used a questionnaire to examine patient perceptions of the interaction with an AI-driven chatbot. Findings: Our results show that scheduling is the main factor causing issues in a physician's work. An AI-driven chatbot may help to optimize waiting time as well as p

Weitere Titel
Искусственный интеллект и оптимизация в области здравоохранения: процесс постановки диагноза
Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Veröffentlichungsversion
begutachtet (peer reviewed)
In: European Journal of Management Issues ; 29 (2021) 4 ; 218-231

Ereignis
Veröffentlichung
(wo)
Mannheim
(wer)
SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.
(wann)
2021
Urheber
Lyon, Jérôme Yves
Bogodistov, Yevgen
Moormann, Jürgen

DOI
10.15421/192121
URN
urn:nbn:de:101:1-2022102511263838082637
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:54 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Lyon, Jérôme Yves
  • Bogodistov, Yevgen
  • Moormann, Jürgen
  • SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.

Entstanden

  • 2021

Ähnliche Objekte (12)