Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not
Abstract The root-mean-squared error (RMSE) and mean absolute error (MAE) are widely used metrics for evaluating models. Yet, there remains enduring confusion over their use, such that a standard practice is to present both, leaving it to the reader to decide which is more relevant. In a recent reprise to the 200-year debate over their use, and give arguments for favoring one metric or the other. However, this comparison can present a false dichotomy. Neither metric is inherently better: RMSE is optimal for normal (Gaussian) errors, and MAE is optimal for Laplacian errors. When errors deviate from these distributions, other metrics are superior.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not ; volume:15 ; number:14 ; year:2022 ; pages:5481-5487 ; extent:7
Geoscientific model development ; 15, Heft 14 (2022), 5481-5487 (gesamt 7)
- Urheber
-
Hodson, Timothy O.
- DOI
-
10.5194/gmd-15-5481-2022
- URN
-
urn:nbn:de:101:1-2022072105164636940143
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:37 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Hodson, Timothy O.