Reduced-Order Modeling of Indirect Fluidized-Bed Particle Receivers with Axial Dispersion
Abstract: Oxide particles present a heat transfer and thermal energy storage (TES) media for next-generation concentrating solar power (CSP) plants where the high-temperature particle TES can provide dispatchable solar power [1]. Transferring heat to flowing particles can be a challenge and bubbling fluidization is a promising method for increased heat transfer between the oxide particles and confining walls. Using experimentally calibrated correlations for particle-wall heat transfer coefficients [2], this study explores in a quasi-1D model of a narrow-channel counterflow fluidized bed how the high heat transfer coefficients from bubbling fluidization enable cavity-based indirect particle receivers. Particle-wall heat transfer coefficients exceeding 800 W m-2 K-1 support angled solar fluxes > 200 kW m-2 from high normal fluxes > 1200 kW m-2 with wall temperatures < 900 oC. Parametric studies identify how gas flows, solar fluxes, and receiver heights impact receiver solar efficiency for a CS.... https://www.tib-op.org/ojs/index.php/solarpaces/article/view/899
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Reduced-Order Modeling of Indirect Fluidized-Bed Particle Receivers with Axial Dispersion ; volume:2 ; year:2023
SolarPACES conference proceedings ; 2 (2023)
- Urheber
-
Brewster, Keaton J.
Fosheim, Jesse R.
Municchi, Federico
Arthur-Arhin, Winfred R.
Jackson, Gregory S.
- DOI
-
10.52825/solarpaces.v2i.899
- URN
-
urn:nbn:de:101:1-2407261242494.999185445891
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 11:00 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Brewster, Keaton J.
- Fosheim, Jesse R.
- Municchi, Federico
- Arthur-Arhin, Winfred R.
- Jackson, Gregory S.