Arbeitspapier

Robust tests for white noise and cross-correlation

Commonly used tests to assess evidence for the absence of autocorrelation in a univariate time series or serial cross-correlation between time series rely on procedures whose validity holds for i.i.d. data. When the series are not i.i.d., the size of correlogram and cumulative Ljung-Box tests can be significantly distorted. This paper adapts standard correlogram and portmanteau tests to accommodate hidden dependence and non-stationarities involving heteroskedasticity, thereby uncoupling these tests from limiting assumptions that reduce their applicability in empirical work. To enhance the Ljung-Box test for non-i.i.d. data a new cumulative test is introduced. Asymptotic size of these tests is unaffected by hidden dependence and heteroskedasticity in the series. Related extensions are provided for testing cross-correlation at various lags in bivariate time series. Tests for the i.i.d. property of a time series are also developed. An extensive Monte Carlo study confirms good performance in both size and power for the new tests. Applications to real data reveal that standard tests frequently produce spurious evidence of serial correlation.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 906

Klassifikation
Wirtschaft
Hypothesis Testing: General
Thema
Serial correlation
cross-correlation
heteroskedasticity
martingale differences

Ereignis
Geistige Schöpfung
(wer)
Dalla, Violetta
Giraitis, Liudas
Phillips, Peter C. B.
Ereignis
Veröffentlichung
(wer)
Queen Mary University of London, School of Economics and Finance
(wo)
London
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Dalla, Violetta
  • Giraitis, Liudas
  • Phillips, Peter C. B.
  • Queen Mary University of London, School of Economics and Finance

Entstanden

  • 2020

Ähnliche Objekte (12)