Arbeitspapier

Robust tests for white noise and cross-correlation

Commonly used tests to assess evidence for the absence of autocorrelation in a univariate time series or serial cross-correlation between time series rely on procedures whose validity holds for i.i.d. data. When the series are not i.i.d., the size of correlogram and cumulative Ljung-Box tests can be significantly distorted. This paper adapts standard correlogram and portmanteau tests to accommodate hidden dependence and non-stationarities involving heteroskedasticity, thereby uncoupling these tests from limiting assumptions that reduce their applicability in empirical work. To enhance the Ljung-Box test for non-i.i.d. data a new cumulative test is introduced. Asymptotic size of these tests is unaffected by hidden dependence and heteroskedasticity in the series. Related extensions are provided for testing cross-correlation at various lags in bivariate time series. Tests for the i.i.d. property of a time series are also developed. An extensive Monte Carlo study confirms good performance in both size and power for the new tests. Applications to real data reveal that standard tests frequently produce spurious evidence of serial correlation.

Language
Englisch

Bibliographic citation
Series: Working Paper ; No. 906

Classification
Wirtschaft
Hypothesis Testing: General
Subject
Serial correlation
cross-correlation
heteroskedasticity
martingale differences

Event
Geistige Schöpfung
(who)
Dalla, Violetta
Giraitis, Liudas
Phillips, Peter C. B.
Event
Veröffentlichung
(who)
Queen Mary University of London, School of Economics and Finance
(where)
London
(when)
2020

Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Dalla, Violetta
  • Giraitis, Liudas
  • Phillips, Peter C. B.
  • Queen Mary University of London, School of Economics and Finance

Time of origin

  • 2020

Other Objects (12)