Arbeitspapier
Inference on a distribution from noisy draws
We consider a situation where a distribution is being estimated by the empirical distribution of noisy measurements. The measurements errors are allowed to be heteroskedastic and their variance may depend on the realization of the underlying random variable. We use an asymptotic embedding where the noise shrinks with the sample size to calculate the leading bias arising from the presence of noise. Conditions are obtained under which this bias is asymptotically non-negligible. Analytical and jackknife corrections for the empirical distribution are derived that recenter the limit distribution and yield confidence intervals with correct coverage in large samples. Similar adjustments are presented for nonparametric estimators of the density and quantile function. Our approach can be connected to corrections for selection bias and shrinkage estimation. Simulation results confirm the much improved sampling behavior of the corrected estimators. An empirical application to the estimation of a stochastic-frontier model is also provided.
- Sprache
-
Englisch
- Erschienen in
-
Series: cemmap working paper ; No. CWP14/18
- Klassifikation
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
- Thema
-
bias correction
nonparametric inference
regression to the mean
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Jochmans, Koen
Weidner, Martin
- Ereignis
-
Veröffentlichung
- (wer)
-
Centre for Microdata Methods and Practice (cemmap)
- (wo)
-
London
- (wann)
-
2018
- DOI
-
doi:10.1920/wp.cem.2018.1418
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Jochmans, Koen
- Weidner, Martin
- Centre for Microdata Methods and Practice (cemmap)
Entstanden
- 2018