Artikel

Optimizing portfolio risk of cryptocurrencies using data-driven risk measures

Portfolio risk management plays an important role in successful investments. Portfolio standard deviation, value-at-risk, expected shortfall, and maximum absolute deviation are widely used portfolio risk measures. However, the existing portfolio risk measures are vulnerable to larger skewness and kurtosis of the asset returns. Moreover, the traditional assumption of normality of the portfolio returns leads to the underestimation of portfolio risk. Cryptocurrencies are a decentralized digital medium of exchange. In contrast to physical money, cryptocurrency payments exist purely as digital entries on an online ledger called blockchain that describe specific transactions. Due to the high volume and high frequency of cryptocurrency transactions, risk forecasting using daily data is not enough, and a high-frequency analysis is required. High-frequency data reveal a very high excess kurtosis and skewness for returns of cryptocurrencies. In order to incorporate larger skewness and kurtosis of the cryptocurrencies, a data-driven portfolio risk measure is minimized to obtain the optimal portfolio weights. A recently proposed data-driven volatility forecasting approach with daily data are used to study risk forecasting for cryptocurrencies with high-frequency (hourly) big data. The paper emphasizes the superiority of portfolio selection of cryptocurrencies by minimizing the recently proposed risk measure over the traditional minimum variance portfolio.

Sprache
Englisch

Erschienen in
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 15 ; Year: 2022 ; Issue: 10 ; Pages: 1-16

Klassifikation
Management
Thema
big data
cryptocurrencies
high-frequency data
portfolio optimization
sign correlation
volatility correlation

Ereignis
Geistige Schöpfung
(wer)
Bowala, Sulalitha
Singh, Japjeet
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2022

DOI
doi:10.3390/jrfm15100427
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Bowala, Sulalitha
  • Singh, Japjeet
  • MDPI

Entstanden

  • 2022

Ähnliche Objekte (12)