Arbeitspapier

Forecasting inflation with the New Keynesian Phillips curve: Frequency matters

We show that the New Keynesian Phillips Curve (NKPC) outperforms standard benchmarks in forecasting U.S. inflation once frequency-domain information is taken into account. We do so by decomposing the time series (of inflation and its predictors) into several frequency bands and forecasting separately each frequency component of inflation. The largest statistically significant forecasting gains are achieved with a model that forecasts the lowest frequency component of inflation (corresponding to cycles longer than 16 years) flexibly using information from all frequency components of the NKPC inflation predictors. Its performance is particularly good in the returning to recovery from the Great Recession.

ISBN
978-952-323-322-5
Sprache
Englisch

Erschienen in
Series: Bank of Finland Research Discussion Papers ; No. 4/2020

Klassifikation
Wirtschaft
Forecasting Models; Simulation Methods
Price Level; Inflation; Deflation
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Thema
inflation forecasting
new Keynesian Phillips curve
frequency domain
wavelets

Ereignis
Geistige Schöpfung
(wer)
Martins, Manuel Mota Freitas
Verona, Fabio
Ereignis
Veröffentlichung
(wer)
Bank of Finland
(wo)
Helsinki
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Martins, Manuel Mota Freitas
  • Verona, Fabio
  • Bank of Finland

Entstanden

  • 2020

Ähnliche Objekte (12)