Artikel

A hypothesis test method for detecting multifractal scaling, applied to Bitcoin prices

Multifractal processes reproduce some of the stylised features observed in financial time series, namely heavy tails found in asset returns distributions, and long-memory found in volatility. Multifractal scaling cannot be assumed, it should be established; however, this is not a straightforward task, particularly in the presence of heavy tails. We develop an empirical hypothesis test to identify whether a time series is likely to exhibit multifractal scaling in the presence of heavy tails. The test is constructed by comparing estimated scaling functions of financial time series to simulated scaling functions of both an iid Student t-distributed process and a Brownian Motion in Multifractal Time (BMMT), a multifractal processes constructed in Mandelbrot et al. (1997). Concavity measures of the respective scaling functions are estimated, and it is observed that the concavity measures form different distributions which allow us to construct a hypothesis test. We apply this method to test for multifractal scaling across several financial time series including Bitcoin. We observe that multifractal scaling cannot be ruled out for Bitcoin or the Nasdaq Composite Index, both technology driven assets.

Language
Englisch

Bibliographic citation
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 13 ; Year: 2020 ; Issue: 5 ; Pages: 1-21 ; Basel: MDPI

Classification
Wirtschaft
Subject
multifractal processes
fractal scaling
heavy tails
long range dependence
financial models
Bitcoin

Event
Geistige Schöpfung
(who)
Jiang, Chuxuan
Dev, Priya
Maller, Ross A.
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2020

DOI
doi:10.3390/jrfm13050104
Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Jiang, Chuxuan
  • Dev, Priya
  • Maller, Ross A.
  • MDPI

Time of origin

  • 2020

Other Objects (12)