Arbeitspapier
Innovative ideas and gender inequality
This paper analyzes the recognition of women's innovative ideas. Bibliometric data from research in economics are used to investigate gender biases in citation patterns. Based on deep learning and machine learning techniques, one can (1) establish the similarities between papers (2) build a link between articles by identifying the papers citing, cited and that should be cited. This study finds that, on average, omitted papers are 15%-20% more likely to be female-authored than male-authored. This omission bias is more prevalent when there are only males in the citing paper. Overall, to have the same level of citation as papers written by males, papers written by females need to be 20 percentiles upper in the distribution of the degree of innovativeness of the paper.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper Series ; No. 35
- Klassifikation
-
Wirtschaft
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Koffi, Marlene
- Ereignis
-
Veröffentlichung
- (wer)
-
University of Waterloo, Canadian Labour Economics Forum (CLEF)
- (wo)
-
Waterloo
- (wann)
-
2021
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Koffi, Marlene
- University of Waterloo, Canadian Labour Economics Forum (CLEF)
Entstanden
- 2021