Faster Bootstrapping via Modulus Raising and Composite NTT

Abstract: FHEW-like schemes utilize exact gadget decomposition to reduce error growth and ensure that the bootstrapping incurs only polynomial error growth. However, the exact gadget decomposition method requires higher computation complexity and larger memory storage. In this paper, we improve the efficiency of the FHEWlike schemes by utilizing the composite NTT that performs the Number Theoretic Transform (NTT) with a composite modulus. Specifically, based on the composite NTT, we integrate modulus raising and gadget decomposition in the external product, which reduces the number of NTTs required in the blind rotation from 2(dg + 1)n to 2(⌈dg⌉/2 + 1)n. Furthermore, we develop a modulus packing technique that uses the Chinese Remainder Theorem (CRT) and composite NTT to bootstrap multiple LWE ciphertexts through one blind rotation process. We implement the bootstrapping algorithms and evaluate the performance on various benchmark computations using both binary and ternary secret keys. Our r.... https://tches.iacr.org/index.php/TCHES/article/view/11262

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Faster Bootstrapping via Modulus Raising and Composite NTT ; volume:2024 ; number:1 ; year:2023
IACR transactions on cryptographic hardware and embedded systems ; 2024, Heft 1 (2023)

Creator
Li, Zhihao
Liu, Ying
Lu, Xianhui
Wang, Ruida
Wei, Benqiang
Chen, Chunling
Wang, Kunpeng

DOI
10.46586/tches.v2024.i1.563-591
URN
urn:nbn:de:101:1-2023120617543992270236
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:23 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Li, Zhihao
  • Liu, Ying
  • Lu, Xianhui
  • Wang, Ruida
  • Wei, Benqiang
  • Chen, Chunling
  • Wang, Kunpeng

Other Objects (12)