Arbeitspapier

Arbitrage and nonlinear tax scales

We look at the theory of arbitrage with taxation under certainty. The tax scale in our model is not linear. Under the premise that tax scale is convex, we analyze prices that do not exhibit arbitrage opportunities. It turns out that there are two kinds of arbitrage: unbounded as well as bounded arbitrage. With bounded arbitrage, the gain from forming an arbitrage portfolio is bounded from above and cannot increase infinitely. In a model with a linear tax scale such a bounded arbitrage cannot exist, all arbitrage portfolios will generate an infinite gain from trade. In contrast to earlier research, we are able to give a complete characterization (i.e., if and only if) whether bounded as well as unbounded arbitrage opportunities will occur only relying on market prices and properties of the tax scale. This characterization relies on so-called implicit tax rates that are defined by a simple relation copied from the case of linear tax scales.

Sprache
Englisch

Erschienen in
Series: arqus Discussion Paper ; No. 205

Klassifikation
Wirtschaft
Optimization Techniques; Programming Models; Dynamic Analysis
Fiscal Policy
Asset Pricing; Trading Volume; Bond Interest Rates
Personal Income and Other Nonbusiness Taxes and Subsidies; includes inheritance and gift taxes
Thema
No-Arbitrage with Taxation
Fundamental Theorem of Asset Pricing
Non-Linear Tax Codes
Application of Convex Optimization Problems

Ereignis
Geistige Schöpfung
(wer)
Becker, Marcus
Löffler, Andreas
Ereignis
Veröffentlichung
(wer)
Arbeitskreis Quantitative Steuerlehre (arqus)
(wo)
Berlin
(wann)
2016

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Becker, Marcus
  • Löffler, Andreas
  • Arbeitskreis Quantitative Steuerlehre (arqus)

Entstanden

  • 2016

Ähnliche Objekte (12)