Spectral Analysis, Properties and Nonsingular Preconditioners for Singular Saddle Point Problems

Abstract: We first derive some explicit bounds on the spectra of generalized non-symmetric singular or nonsingular saddle point matrices. Then we propose two new nonsingular preconditioners for solving generalized singular saddle point problems, and show that GMRES determines a solution without breakdown when applied to the resulting preconditioned systems with any initial guess. Furthermore, the detailed spectral properties of the preconditioned systems are analyzed. The nonsingular preconditioners are also applied to solve the singular finite element saddle point systems arising from the discretization of the Stokes problems to test their performance.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Spectral Analysis, Properties and Nonsingular Preconditioners for Singular Saddle Point Problems ; volume:18 ; number:2 ; year:2018 ; pages:237-256 ; extent:20
Computational methods in applied mathematics ; 18, Heft 2 (2018), 237-256 (gesamt 20)

Creator
Huang, Na
Ma, Chang-Feng
Zou, Jun

DOI
10.1515/cmam-2017-0006
URN
urn:nbn:de:101:1-2410251659008.630627690117
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:24 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Huang, Na
  • Ma, Chang-Feng
  • Zou, Jun

Other Objects (12)