Artikel

Multi-objective decision model for green supply chain management

In this paper, a multi-objective linear programming model was developed which sought to simultaneously optimize total costs and total GHG emissions for the Thai Rubber supply chain. The model was solved by the ε -constraint method which computed the Pareto optimal solution. Each point in the Pareto set entailed a different design of quantity of rubber product flow between the supply chain entities and transport modes and routes. The result obtained show the trade-offs between costs and GHG emissions. It appears that improvements in cost reductions are only possible by compromising on and allowing for higher GHG emissions. From the Pareto set of solutions, each point is equally effective solution for achieving significant cost reductions without compromising too far on GHG emissions. Scenarios analysis were considered to examine the impact of transportation and distribution restructuring on the trade-off between GHG emissions and costs vis-à-vis the baseline model. Overall, the model developed in this research, together with its Pareto optimal solutions analysis, shows that it can be used as an effective tool to design a new and workable GSCM model for the Thai Rubber industry.

Sprache
Englisch

Erschienen in
Journal: Cogent Business & Management ; ISSN: 2331-1975 ; Volume: 7 ; Year: 2020 ; Issue: 1 ; Pages: 1-33 ; Abingdon: Taylor & Francis

Klassifikation
Management
Thema
green supply chain management
multi-objective optimization
rubber industry
GHG emissions

Ereignis
Geistige Schöpfung
(wer)
Janya Chanchaichujit
Balasubramanian, Sreejith
Shukla, Vinaya
Rosas, Jose-Saavedra
Ereignis
Veröffentlichung
(wer)
Taylor & Francis
(wo)
Abingdon
(wann)
2020

DOI
doi:10.1080/23311975.2020.1783177
Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Janya Chanchaichujit
  • Balasubramanian, Sreejith
  • Shukla, Vinaya
  • Rosas, Jose-Saavedra
  • Taylor & Francis

Entstanden

  • 2020

Ähnliche Objekte (12)