Simulation showed undesirable results for competing risk analysis with time-dependent covariates for clinical outcomes
Abstract: Background: We evaluate three methods for competing risks analysis with time-dependent covariates in comparison with the corresponding methods with time-independent covariates
Methods: We used cause-specific hazard analysis and two summary approaches for in-hospital death: logistic regression and regression of the subdistribution hazard. We analysed real hospital data (n=1864) and considered pneumonia on admission / hospital-acquired pneumonia as time-independent / time-dependent covariates for the competing events ’discharge alive’ and ’in-hospital death’. Several simulation studies with time-constant hazards were conducted
Results: All approaches capture the effect of time-independent covariates, whereas the approaches perform differently with time-dependent covariates. The subdistribution approach for time-dependent covariates detected effects in a simulated no-effects setting and provided counter-intuitive effects in other settings
Conclusions: The extension of the Fine and Gray model to time-dependent covariates is in general not a helpful synthesis of the cause-specific hazards. Cause-specific hazard analysis and, for uncensored data, the odds ratio are capable of handling competing risks data with time-dependent covariates but the use of the subdistribution approach should be neglected until the problems can be resolved. For general right-censored data, cause-specific hazard analysis is the method of choice
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2018
- DOI
-
10.1186/s12874-018-0535-5
- URN
-
urn:nbn:de:bsz:25-freidok-165369
- Rechteinformation
-
Kein Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
25.03.2025, 13:52 MEZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
Entstanden
- 2018